## cisco

#### Introduction to Dynamic Routing Protocol



Routing Protocols and Concepts – Chapter 3

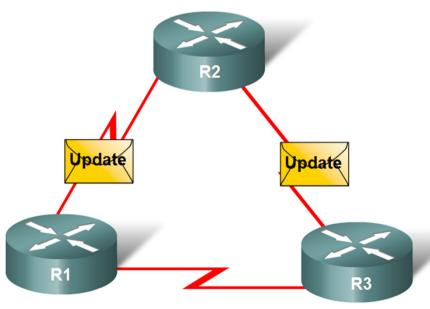




### **Objectives**

- Describe the role of dynamic routing protocols and place these protocols in the context of modern network design.
- Identify several ways to classify routing protocols.
- Describe how metrics are used by routing protocols and identify the metric types used by dynamic routing protocols.
- Determine the administrative distance of a route and describe its importance in the routing process.
- Identify the different elements of the routing table.

### **Dynamic Routing Protocols**


#### Function(s) of Dynamic Routing Protocols:

-Dynamically share information between routers.

-Automatically update routing table when topology changes.

-Determine best path to a destination.

**Routers Dynamically Pass Updates** 



### **Dynamic Routing Protocols**

#### The purpose of a dynamic routing protocol is to:

-Discover remote networks

-Maintaining up-to-date routing information

-Choosing the best path to destination networks

-Ability to find a new best path if the current path is no longer available

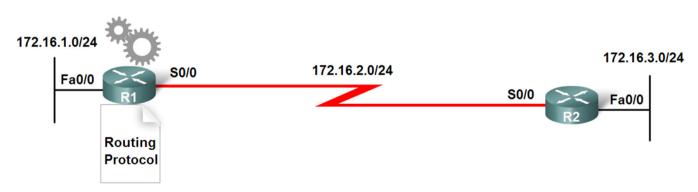
**Routing Protocol Operation** 

Routing protocols are used to exchange routing information between the routers.



172.16.1.0/24

# Dynamic Routing Protocols Components of a routing protocol


#### **Algorithm**

In the case of a routing protocol algorithms are used for facilitating routing information and best path determination

#### **Routing protocol messages**

These are messages for discovering neighbors and

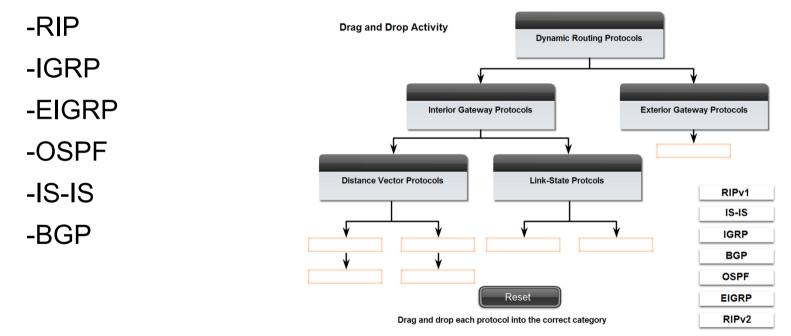
**Routing Protocol Operation** 



Routing protocols are used to exchange routing information between the routers.

### **Dynamic Routing Protocols**

#### Advantages of static routing

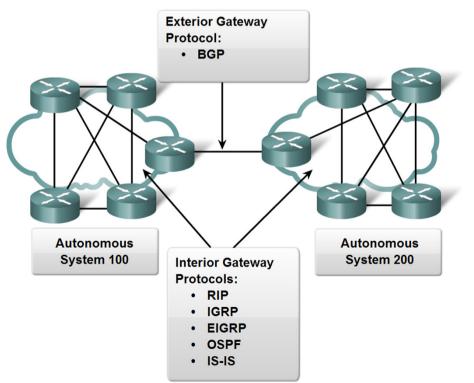

- -It can backup multiple interfaces/networks on a router
- -Easy to configure
- -No extra resources are needed
- -More secure

#### Disadvantages of static routing

-Network changes require manual reconfiguration -Does not scale well in large topologies



 Dynamic routing protocols are grouped according to characteristics. Examples include:




 Autonomous System is a group of routers under the control of a single authority.



- Types of routing protocols:
  - -Interior Gateway Protocols (IGP)
  - -Exterior Gateway Protocols (EGP)





#### Interior Gateway Routing Protocols (IGP)

-Used for routing inside an autonomous system & used to route within the individual networks themselves.

-Examples: RIP, EIGRP, OSPF

#### Exterior Routing Protocols (EGP)

-Used for routing between autonomous systems

-Example: BGPv4

#### ululu cisco.

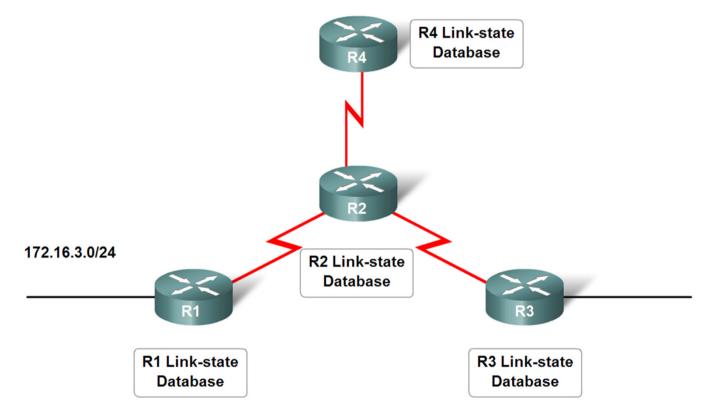
### **Classifying Routing Protocols**

#### IGP: Comparison of Distance Vector & Link State Routing Protocols

#### **Distance vector**

- routes are advertised as vectors
  - of distance & direction.
- incomplete view of network topology.
- -Generally, periodic

updates.


#### Link state

- complete view of network topology is created.
- updates are not periodic.

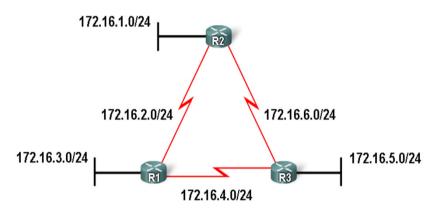




Link-state Protocol Operation

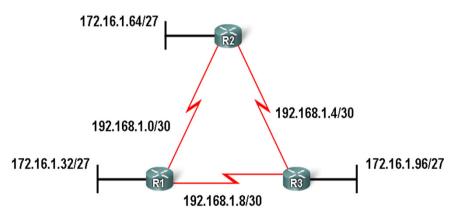


Link-state protocols pass updates when a link's state changes.




- Classful routing protocols
  - Do NOT send subnet mask in routing updates

#### Classless routing protocols

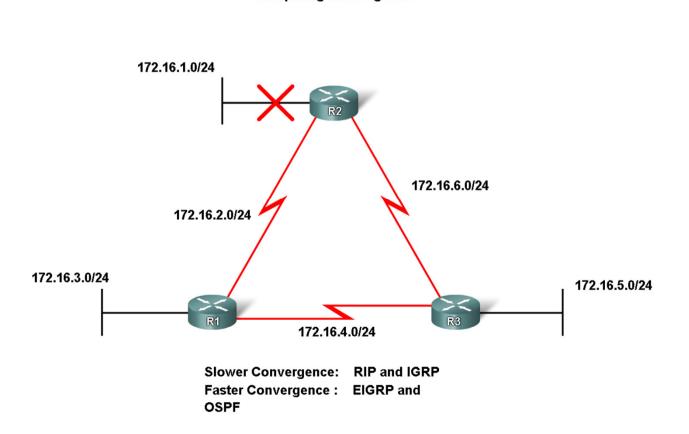

Do send subnet mask in routing updates.

**Classful vs. Classless Routing** 



Cisco Networking Academy

#### Classful: Subnet mask is the same throughout the topology



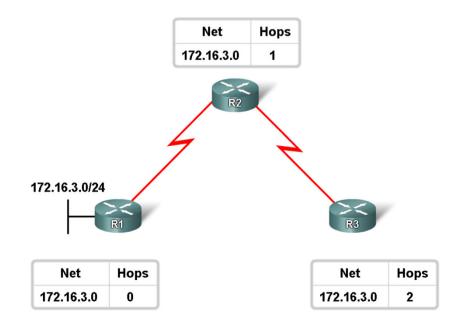

#### Classless: Subnet mask can vary in the topology



 Convergence is defined as when all routers' routing tables are at a state of consistency

**Comparing Convergence** 

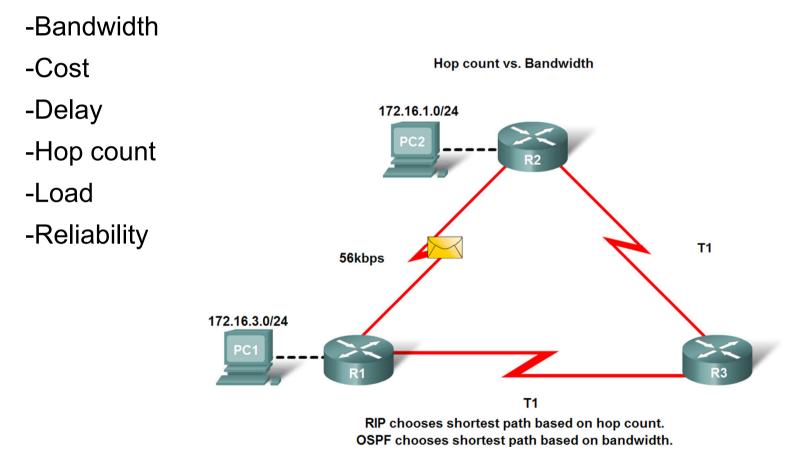





### **Routing Protocols Metrics**

#### Metric

A value used by a routing protocol to determine which routes are better than others.

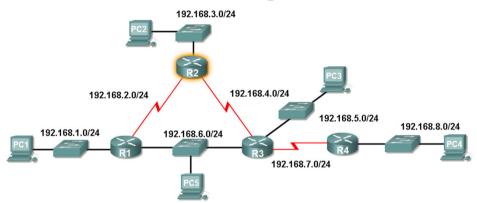

Metrics





### **Routing Protocols Metrics**

#### Metrics used in IP routing protocols




#### ululu cisco.

### **Routing Protocols Metrics**

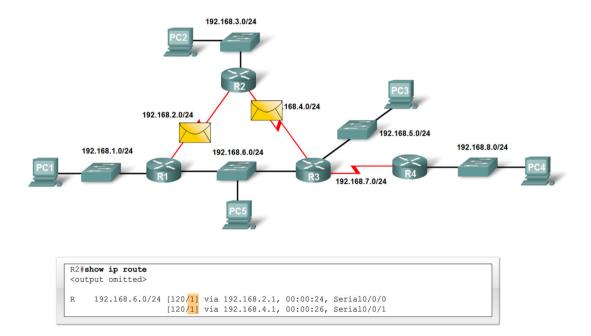
- The Metric Field in the Routing Table
- Metric used for each routing protocol
  - -RIP hop count
  - -IGRP & EIGRP -Bandwidth (used by default), Delay (used by default), Load, Reliability
  - -IS-IS & OSPF Cost, Bandwidth (Cisco's implementation)

#### Metric in the Routing Table



Cisco Networking Academy

| R2 | #show ip route                                              |
|----|-------------------------------------------------------------|
| <0 | utput omitted>                                              |
| Ga | teway of last resort is not set                             |
|    | -                                                           |
| R  | 192.168.1.0/24 [120/1] via 192.168.2.1, 00:00:24, Serial0/0 |
| С  | 192.168.2.0/24 is directly connected, Serial0/0             |
| С  | 192.168.3.0/24 is directly connected, FastEthernet0/0       |
| С  | 192.168.4.0/24 is directly connected, Serial0/1             |
| R  | 192.168.5.0/24 [120/1] via 192.168.4.1, 00:00:26, Serial0/1 |
| R  | 192.168.6.0/24 [120/1] via 192.168.2.1, 00:00:24, Serial0/0 |
|    | [120/1] via 192.168.4.1, 00:00:26, Serial0/1                |
| R  | 192.168.7.0/24 [120/1] via 192.168.4.1, 00:00:26, Serial0/1 |
| R  | 192.168.8.0/24 [120/2] via 192.168.4.1, 00:00:26, Serial0/1 |


#### It is 2 hops from R2 to 192.168.8.0/24



### **Routing Protocols Metrics**

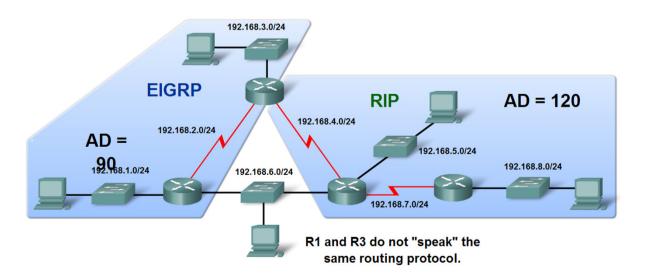
#### Load balancing

This is the ability of a router to distribute packets among multiple same cost paths



Load Balancing Across Equal Cost Paths




### **Administrative Distance of a Route**

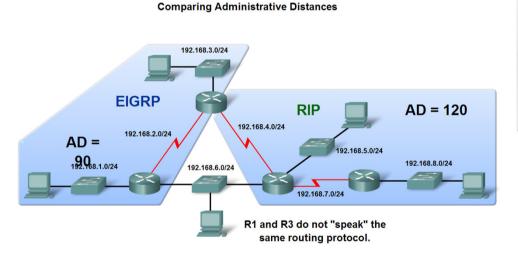
#### Purpose of a metric

It's a calculated value used to determine the best path to a destination

#### Purpose of Administrative Distance

It's a numeric value that specifies the preference of a particular route




**Comparing Administrative Distances** 



### **Administrative Distance of a Route**

Identifying the Administrative Distance (AD) in a routing table

It is the first number in the brackets in the routing table



| R2#                                                  | show ip route                                                      |  |
|------------------------------------------------------|--------------------------------------------------------------------|--|
| <ou< td=""><td>itput omitted&gt;</td><td></td></ou<> | itput omitted>                                                     |  |
| Gat                                                  | teway of last resort is not set                                    |  |
| D                                                    | 192.168.1.0/24 [90/2172416] via 192.168.2.1, 00:00:24, Serial0/0/0 |  |
| C                                                    | 192.168.2.0/24 is directly connected, Serial0/0/0                  |  |
| С                                                    | 192.168.3.0/24 is directly connected, FastEthernet0/0              |  |
| C                                                    | 192.168.4.0/24 is directly connected, Serial0/0/1                  |  |
| R                                                    | 192.168.5.0/24 [120/1] via 192.168.4.1, 00:00:08, Serial0/0/1      |  |
| D                                                    | 192.168.6.0/24 [90/2172416] via 192.168.2.1, 00:00:24, Serial0/0/0 |  |
| R                                                    | 192.168.7.0/24 [120/1] via 192.168.4.1, 00:00:08, Serial0/0/1      |  |
| R                                                    | 192.168.8.0/24 [120/2] via 192.168.4.1, 00:00:08, Serial0/0/1      |  |

| R2#show ip rip d | latabase             |                 |
|------------------|----------------------|-----------------|
| 192.168.3.0/24   | directly connected,  | FastEthernet0/0 |
| 192.168.4.0/24   | directly connected,  | Serial0/0/1     |
| 192.168.5.0/24   | -                    |                 |
| [1] via 192.     | 168.4.1, Serial0/0/1 |                 |
| 192.168.6.0/24   |                      |                 |
| [1] via 192.     | 168.4.1, Serial0/0/1 |                 |
| 192.168.7.0/24   |                      |                 |
| [1] via 192.     | 168.4.1, Serial0/0/1 |                 |
| 192.168.8.0/24   |                      |                 |
| [2] via 192.     | 168.4.1, Serial0/0/1 |                 |

### Administrative Distance of a Route • Dynamic Routing Protocols

uluilu cisco.

| Route source        | Default AD |  |
|---------------------|------------|--|
| Connected interface | 0          |  |
| Static              | 1          |  |
| EIGRP summary route | 5          |  |
| eBGP                | 20         |  |
| EIGRP (Internal)    | 90         |  |
| IGRP                | 100        |  |
| OSPF                | 110        |  |
| IS - IS             | 115        |  |
| RIP                 | 120        |  |
| EIGRP (External)    | 170        |  |
| iBGP                | 200        |  |
| Unknown             | 255        |  |

Default Administrative Distances



### **Administrative Distance of a Route**

#### Directly connected routes

Have a default AD of 0

#### Static Routes

Administrative distance of a static route has a **default value of** 1

```
R2#show ip route 172.16.3.0
Routing entry for 172.16.3.0/24
Known via "static", distance 1, metric 0 (connected)
Routing Descriptor Blocks:
 * directly connected, via Serial0/0/0
Route metric is 0, traffic share count is 1
```

### Administrative Distance of a Route

#### Directly connected routes

-Immediately appear in the routing table as soon as the interface is configured

```
R2#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     172.16.0.0/24 is subnetted, 3 subnets
       172.16.1.0 is directly connected, FastEthernet0/0
       172.16.2.0 is directly connected, Serial0/0/0
C
       172.16.3.0 is directly connected, Serial0/0/0
S
С
    192.168.1.0/24 is directly connected, Serial0/0/1
S
    192.168.2.0/24 [1/0] via 192.168.1.1
```

#### ululu cisco.

### Summary

- Dynamic routing protocols fulfill the following functions
  - -Dynamically share information between routers
  - -Automatically update routing table when topology changes
  - -Determine best path to a destination

#### Routing protocols are grouped as either

-Interior gateway protocols (IGP)Or

-Exterior gateway protocols(EGP)

#### Types of IGPs include

-Classless routing protocols - these protocols include subnet mask in routing updates

-Classful routing protocols - these protocols do not include subnet mask in routing update



### Summary

- Metrics are used by dynamic routing protocols to calculate the best path to a destination.
- Administrative distance is an integer value that is used to indicate a router's "trustworthiness"
- Components of a routing table include:
  - -Route source
  - -Administrative distance
  - -Metric

#